基于双重约束的多帧图像降噪方法

基于双重约束的多帧图像降噪方法

Aharon M,Elad M,Bruckstein A,2006.K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation.IEEE Trans Signal Process,54(11):4311-4322.doi:10.1109/TSP.2006.881199http://doi.org/10.1109/TSP.2006.881199

Ahn B,Cho NI,2017.Block-matching convolutional neural network for image denoising.https://arxiv.org/abs/1704.00524https://arxiv.org/abs/1704.00524

Buades A,Coll B,Morel JM,2005.A non-local algorithm for image denoising.IEEE Computer Society Conf on Computer Vision and Pattern Recognition, p.60-65.doi:10.1109/CVPR.2005.38http://doi.org/10.1109/CVPR.2005.38

Burger HC,Schuler CJ,Harmeling S,2012.Image denoising: can plain neural networks compete with BM3D? IEEE Conf on Computer Vision and Pattern Recognition, p.2392-2399.doi:10.1109/CVPR.2012.6247952http://doi.org/10.1109/CVPR.2012.6247952

Chambolle A,2004.An algorithm for total variation minimization and applications.J Math Imag Vis,20(1-2):89-97.doi:10.1023/B:JMIV.0000011325.36760.1ehttp://doi.org/10.1023/B:JMIV.0000011325.36760.1e

Dabov K,Foi A,Katkovnik V,et al.,2007.Image denoising by sparse 3-D transform-domain collaborative filtering.IEEE Trans Image Process,16(8):2080-2095.doi:10.1109/TIP.2007.901238http://doi.org/10.1109/TIP.2007.901238

Divakar N,Babu RV,2017.Image denoising via CNNs: an adversarial approach.Proc IEEE Conf on Computer Vision and Pattern Recognition Workshops, p.1076-1083.doi:10.1109/CVPRW.2017.145http://doi.org/10.1109/CVPRW.2017.145

Godard C,Matzen K,Uyttendaele M,2018.Deep burst denoising.Proc European Conf on Computer Vision, p.560-577.doi:10.1007/978-3-030-01267-0_33http://doi.org/10.1007/978-3-030-01267-0_33

Krull A,Buchholz TO,Jug F,2019.Noise2Void—learning denoising from single noisy images.Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2124-2132.doi:10.1109/CVPR.2019.00223http://doi.org/10.1109/CVPR.2019.00223

LeCun Y,Bottou L,Bengio Y,et al.,1998.Gradient-based learning applied to document recognition.Proc IEEE,86(11):2278-2324.doi:10.1109/5.726791http://doi.org/10.1109/5.726791

Lehtinen J,Munkberg J,Hasselgren J,et al.,2018.Noise2Noise: learning image restoration without clean data.https://arxiv.org/abs/1803.04189https://arxiv.org/abs/1803.04189

Lempitsky V,Vedaldi A,Ulyanov D,2018.Deep image prior.Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.9446-9454.doi:10.1109/CVPR.2018.00984http://doi.org/10.1109/CVPR.2018.00984

Liu ZW,Yuan L,Tang XO,et al.,2014.Fast burst images denoising.ACM Trans Graph,33(6):Article 232.doi:10.1145/2661229.2661277http://doi.org/10.1145/2661229.2661277

Mao XJ,Shen CH,Yang YB,2016.Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections.https://arxiv.org/abs/1603.09056v2https://arxiv.org/abs/1603.09056v2

Mildenhall B,Barron JT,Chen JW,et al.,2018.Burst denoising with kernel prediction networks.Proc IEEE/CVF Conf on Computer Vision and Pattern Recognition, p.2502-2510.doi:10.1109/CVPR.2018.00265http://doi.org/10.1109/CVPR.2018.00265

Mosseri I,Zontak M,Irani M,2013.Combining the power of internal and external denoising.IEEE Int Conf on Computational Photography, p.1-9.doi:10.1109/ICCPhot.2013.6528298http://doi.org/10.1109/ICCPhot.2013.6528298

Perona P,Malik J,1990.Scale-space and edge detection using anisotropic diffusion.IEEE Trans Patt Anal Mach Intell,12(7):629-639.doi:10.1109/34.56205http://doi.org/10.1109/34.56205

Simonyan K,Zisserman A,2014.Very deep convolutional networks for large-scale image recognition.https://arxiv.org/abs/1409.1556v4https://arxiv.org/abs/1409.1556v4

Tassano M,Delon J,Veit T,2019.DVDNET: a fast network for deep video denoising.IEEE Int Conf on Image Processing, p.1805-1809.doi:10.1109/ICIP.2019.8803136http://doi.org/10.1109/ICIP.2019.8803136

Tomasi C,Manduchi R,1998.Bilateral filtering for gray and color images.Sixth Int Conf on Computer Vision, p.839-846.doi:10.1109/ICCV.1998.710815http://doi.org/10.1109/ICCV.1998.710815

Vincent P,Larochelle H,Lajoie I,et al.,2010.Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion.J Mach Learn Res,11:3371-3408.

Xu J,Zhang L,Zuo WM,et al.,2015.Patch group based nonlocal self-similarity prior learning for image denoising.Proc IEEE Int Conf on Computer Vision, p.244-252.doi:10.1109/ICCV.2015.36http://doi.org/10.1109/ICCV.2015.36

Yang D,Sun J,2018.BM3D-Net: a convolutional neural network for transform-domain collaborative filtering.IEEE Signal Process Lett,25(1):55-59.doi:10.1109/LSP.2017.2768660http://doi.org/10.1109/LSP.2017.2768660

Zhang K,Zuo WM,Chen YJ,et al.,2017.Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising.IEEE Trans Image Process,26(7):3142-3155.doi:10.1109/TIP.2017.2662206http://doi.org/10.1109/TIP.2017.2662206

Zhang K,Zuo WM,Zhang L,2018.FFDNet: toward a fast and flexible solution for CNN-based image denoising.IEEE Trans Image Process,27(9):4608-4622.doi:10.1109/TIP.2018.2839891http://doi.org/10.1109/TIP.2018.2839891