协方差的计算方法

协方差的计算方法

下部分引自另一篇博客https://blog.csdn.net/qq_23100417/article/details/84935692

协方差代表的意义是什么? 在概率论中,两个随机变量 X 与 Y 之间相互关系,大致有下列3种情况: 情况一,如上, 当 X, Y 的联合分布像上图那样时,我们可以看出,大致上有: X 越大 Y 也越大, X 越小 Y 也越小,这种情况,我们称为“正相关”。 情况二, 如上图, 当X, Y 的联合分布像上图那样时,我们可以看出,大致上有:X 越大Y 反而越小,X 越小 Y 反而越大,这种情况,我们称为“负相关”。 情况三,如上图, 当X, Y 的联合分布像上图那样时,我们可以看出:既不是X 越大Y 也越大,也不是 X 越大 Y 反而越小,这种情况我们称为“不相关”。

怎样将这3种相关情况,用一个简单的数字表达出来呢? 在图中的区域(1)中,有 X>EX ,Y-EY>0 ,所以(X-EX)(Y-EY)>0; 在图中的区域(2)中,有 X0 ,所以(X-EX)(Y-EY)<0; 在图中的区域(3)中,有 X0; 在图中的区域(4)中,有 X>EX ,Y-EY<0 ,所以(X-EX)(Y-EY)<0。

当X 与Y 正相关时,它们的分布大部分在区域(1)和(3)中,小部分在区域(2)和(4)中,所以平均来说,有E(X-EX)(Y-EY)>0 。 当 X与 Y负相关时,它们的分布大部分在区域(2)和(4)中,小部分在区域(1)和(3)中,所以平均来说,有(X-EX)(Y-EY)<0 。 当 X与 Y不相关时,它们在区域(1)和(3)中的分布,与在区域(2)和(4)中的分布几乎一样多,所以平均来说,有(X-EX)(Y-EY)=0 。

所以,我们可以定义一个表示X, Y 相互关系的数字特征,也就是协方差 cov(X, Y) = E[(X-EX)(Y-EY)] 当 cov(X, Y)>0时,表明 X与Y 正相关; 当 cov(X, Y)<0时,表明X与Y负相关; 当 cov(X, Y)=0时,表明X与Y不相关。 且绝对值越大,相关性越大。 这就是协方差的意义。

上面是协方差的意义,协方差堆在一起就组成了协方差矩阵。

相关推荐